



CONTOIL®

Fuel oil meters DN 15...50

A versatile flow meter for oil, heavy oil and many other oil-like liquids. It is used for efficient consumption measurement of heat burners and various combustion engines. A reliable solution for any application where oil is consumed.

Features

- State-of-the-art design
- Electronic counter, Mass flow, volume flow indication, analog, multiple output signals
- Integrated temperature sensor
- No straight inlets or outlets required
- Independent of viscosity and temperature
- High vibration resistance
- Optional: metrological type approvals
- Auto Medium switch over by temperature

Benefits

- Mass flow measurements
- Highly flexible mounting with very small space requirements
- Reliable monitoring and flexible control of the system
- Accurate measurements
- A reliable solution with everything from a single supplier
- Simplifies consumption optimizing

Product range CONTOIL® DN 15...50

CONTOIL®

Hydraulic

CONTOIL® VZF/A II

Electronic read out

one hydraulic with multiple read out options

Housing with threaded or flanged connections

Main characteristics:

- optimal flow range 10...30 000 l/h
- temperature ranges 130 and 180 °C
- nominal pressure PN 16 and 25 bar (PN 40 on request)

Page 7

with multifunctional display and adjustable outputs

Electronic display of:

- totalizer, total, resettable volume, mass and temperature
- actual flow rate
- other flow parameters

Output signals for:

- volume and mass pulses
- actual flow rate and mass flow
- limiting values (Qmin, Qmax)
- simple to operate
- interactive parameter input
- external power supply (4...20 mA loop powered)

Page 8

CONTOIL® VZO/A

Mechanical read out

total volume display

Total volume display on roller counter

Page 10

CONTOIL® VZO/A RV/IN

Mechanical read out

total volume display and remote transmission

Total volume display on roller counter with Reed pulse RV for remote totalization

Inductive IN pulse for control purposes

Page 10

CONTOIL® DFM

Blind unit

compact design for remote display transmission

Pulse value for remote totalizing

Page 12

CONTOIL® CE MID

Conformity approved read out

for verified applications where an approved measurement system is required

Page 14

Content

Introduction	4
Operating principle	5
Technical specifications	7
Project planning notes	21
Installation	25
Display and user interface	28
Warranty, safety instructions	29
Certificates	30

Introduction

Thank you for your decision to work with Aquametro Oil & Marine AG Fuel Performance Products. This technical specification describes the installation, commissioning and use of CONTOIL® Fuel Meters. For additional information please contact your local sales agent at: www.aquametro-oil-marine.com.

Liability Disclaimer

The manufacturer cannot monitor the compliance to this manual as well as the conditions and methods during the installation, operation, usage and maintenance of the system regulator.

Improper installation can cause damages and endanger people. Therefore, we assume no responsibility and liability for losses, damages or costs that result due to incorrect installation, improper operation, usage and maintenance or in any manner associated therewith. Similarly, we assume no responsibility for patent right or other right infringements of third parties caused by usage of this system regulator.

The manufacturer reserves the right, without prior notification, to make modifications concerning the product, technical data or installation and operating manual.

Safety precautions

CONTOIL® flow meters must only be used for their intended purpose and comply with local and international safety regulations. All documentation is to be followed exactly. None of the information stated here or elsewhere releases planners, installers and operators from their own careful and comprehensive assessment of the respective plant configuration in terms of functional capability and operational safety.

- Local applicable working regulations must be complied with, during all work on the plant and/or ship.
- All safety-, installation- and operation instruction as described in this manual must be followed.
- Sensors are sensitive measuring instruments and should be treated carefully.

Operating principle

Function

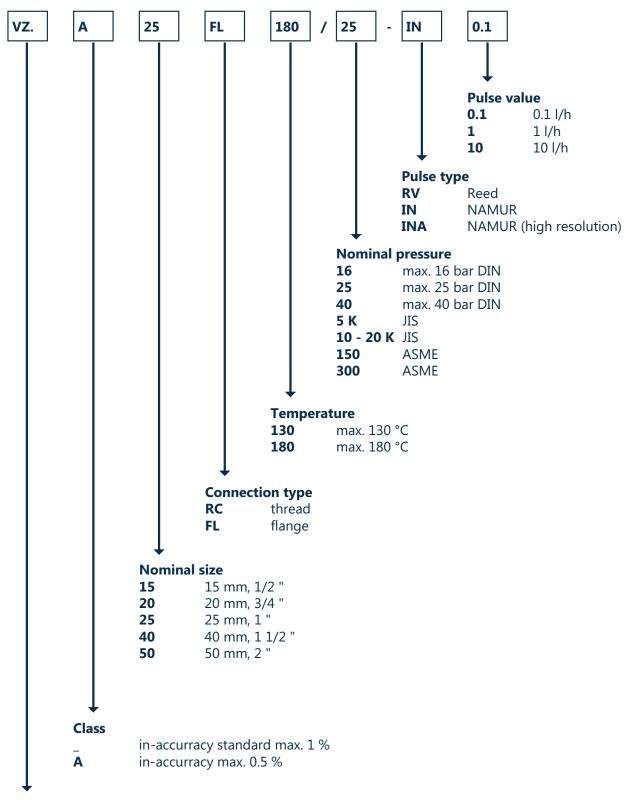
CONTOIL® flow meters work on the volumetric principle of rotary piston meters (positive displacement meters).

The main features of this measuring principle are large measuring ranges, high accuracy, suitability for high viscosities and independence from power supply; flow disturbances do not influence proper operation.

Leading manufacturers of oil burners and operators of heating systems, ships or diesel engines rely on CONTOIL® fuel oil meters - and with good reasons.

The advantages of CONTOIL® fuel oil meters - your benefits

- Optimal solution for every application
- Mass flow measurement (VZF II types)
- Integrated temperature sensor (VZF II types)
- Simple burner setting with flow rate display (VZF II types)
- Simple consumption monitoring with limiting value switch Qmin/Qmax (VZF II types)
- Manual dosing feature, with a resettable counter (VZF II types)
- Can be mounted on the pressure or suction side of a pump
- Space-saving installation, because no straight inlet/outlet sections are required
- Flexible mounting of the meter in horizontal, vertical or inclined positions
- Accurate measurement result, since the reading is independent of the temperature and viscosity of the fluid
- Minimum failure costs due to simple function monitoring, rapid fault analysis and the possibility of simple repairs on site


Areas of application

- To measure heating fuel consumption by oil burners (for example, in heating boilers, industrial furnaces, tar processing plants)
- Consumption monitoring and optimisation (ships, generators, etc)
- Flow measurement for mineral oils
- Optional remote processing and integration into superior systems
- Manual dosing / batching

Fuel types

- Fluids according to ISO 8217-2010
- Heating fuel extra light / light, medium, heavy, fuel blends
- Naphtha
- Lubricating liquids (oils)

Type key

Product Series

VZO mechanical display unit (VZO 25 FL 180/RV0.1) **VZF II** electronic display unit (VZFA II 25 FL 180/25)

Technical specifications

Technical data CONTOIL® DN 15...50 Hydraulic

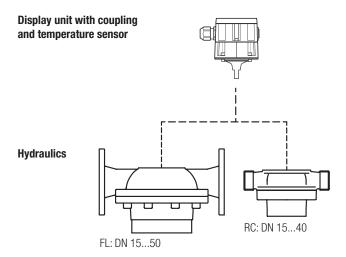
Hydraulic			Meter D	N size			1
Nominal diameter		DN mm	15	20	25	40	50
		inch	1/2	3/4	1	1 1/2	2
Installation length		mm	165	165	190	300	350
Nominal pressure threaded		PN bar	16				N/A
ends							
Nominal pressure flanges		PN bar	25 / 40				
Maximum flow rate	Qmax 2)	l/h	600	1500	3000	9000	30000
Continuous flow rate	Qcont 2)	l/h	400	1000	2000	6000	20000
Minimum flow rate	Qmin	l/h	20	40	75	225	750
Approx. starting flow rate		l/h	4	12	30	90	300
Max. permissible error 1)	(VZF II/VZ	O/DFM)	<±1.0 %	of actual v	/alue		
	(VZFA II/V	ZOA)	<±0.5 %	of actual v	/alue		
	VZFA II	linearized	<±0.3 %	of actual v	/alue		
Repeatability			<±0.1 %)			
Measuring chamber volume		cm ³	12	36	100	330	1200
Safety filter mesh size		mm	0.400	0.400	0.400	0.800	0.800
Weight with threaded ends 3)		kg	2.2	2.5	4.2	17.3	-
Weight with flanges PN 25		kg	3.8	4.5	7.5	20.3	41.0
Weight with flanges PN 40		kg	4.4	5.5	7.8	20.5	42.0
Hydraulic Material			Meter D	N size			1
Part	Material	DN mm	15	20	25	40	50
Housing with threaded ends	Cast Brass						-
· ·	Spheroida						
	iron GJS 4				_		
Housing with flanged ends	iron GJS 4	ll graphite 00-15		•	•	•	•
Measuring chamber PN 16 / 25	Cast Brass						
-	Alu-Bronz	e					
Measuring chamber PN 40	Stainless s	steel					
Seals	FPM fluor	elastomer					
Rotary piston	Anodized	aluminium					
Ancillaries	Plastic						
Housing finish	Enameled 3013	red, RAL	•	•	•	•	•

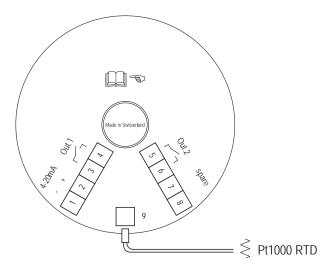
¹⁾ Manufacturer's specification, valid for the reference conditions as specified under Reference conditions.

For burners and engines or motors, the meter must be selected on the basis of the permanent flow rate. For higher viscosities, or if the meter is installed on the suction side, the pressure drop and any reduction in the measuring range must be taken into consideration.

³⁾ Weight without couplings.

Technical data CONTOIL® VZF/A II Electronic display




Electronic display			Meter DN	N size			-
Nominal diameter		DN mm	15	20	25	40	50
		inch	1/2	3/4	1	1 1/2	2
Max. medium temperature	Tmax	°C	130, 180				
Max. environment temperature		°C	-25+70				
Max. storage temperature	Tmax	°C	-25+85				
Max. storage humidity	rhmax	% rh	95, non co	ondensin	g		
Total volume / mass		I, m ³ , G ¹⁾ ,	max. 3 de	cimals (d	ynamic)		
		kg, t, lb					
Resettable volume / mass			max. 3 de	cimals (d	ynamic)		
		kg, t, lb	2 1				
Flow rate			max. 3 de	cimals (d	ynamic)		
Smallest readable amount			0.001				
Maximum registration capacity			8 digits				
Registration time until overrun	Qcont (m³)		>100 year	rs			
Electronic	(111°)			1			
Supply voltage		VDC	630	1			
Quiescent current		A	4mA				
Solid state relay (out1 & out2)			אוווד				
Resistance ON		Ohm	≤100				
Resistance OFF		MOhm	≥100 ≥10				
		VAC/VDC					
Max. Supplay voltage Umax		•					
Switching current Imax		mA	≤50				
Pulse width		ms	2500				
Pulse frequency		Hz	0200				
Outputs	1						
Three			freely sele	ectable, to	otally indep	pendent of e	ach other
(2 pulse/freq., 1 420 mA)				-	1 0 20	0 1 ((FO 0) I
Pulse value totalizer			cycle)			<u> </u>	(50 % duty
Current 420 mA for flow			volume flo 20 mA	ow, mass	flow or ten	nperature sig	gnal to 4 and
Frequency for flow	Qmin, Qm	nax	minimum,	, maximu	m and hyst	teresis parar	meterized
State switch	Alarm, Err	or	state and	on/off pa	arameterize	ed	

¹⁾ 1 US gallon corresponds to 3.785 liters.

Electronic counter CONTOIL® VZF/A II

Local electronical display with multiple output.

Sensor area! (Sensor dome)

No cables, wires or other installation material must be present in this area. This can lead to incorrect measurements and damage to the meter.

1/2 power supply and analog current signal output

3 - 6 Output 1 and 2

Wire size for terminal 1 - 6 is: 0.75...1.5 mm² / 20...16 AWG

Factory setting of outputs

Output 1: Volume pulses: 50 ms, 1 ltr/pulse (exception: DN 15 is set to 0.1 ltr/pulse)

Output 2: Volume pulses: 50 ms, 1 ltr/pulse (exception: DN 15 is set to 0.1 ltr/pulse)

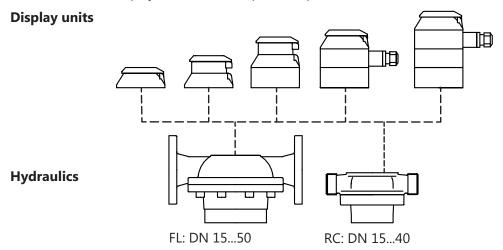
Analog: disabled (off)

Engineering notes

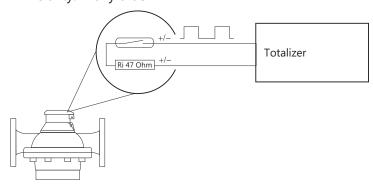
The maximum frequency is calculated with the following formula:

 $\frac{\text{max.flow rate in liters/hour}}{\text{pulse value in liters x 3600}} = \text{frequency in Hz} \le 200 \text{ Hz}$

Technical data CONTOIL® VZO/A Mechanical display

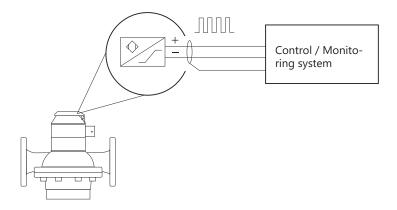


Mechanical display	Meter DN size						
Nominal diameter	DN mm	15	20	25	40	50	
	inch	1/2	3/4	1	1 1/2	2	
Smallest readable amount	I	0.01	0.1	0.1	0.1	1	
Maximum registration capacity	m^3	1000	10000	10000	10000	100000	
Registration time until overrun							
Qcont (m³)	h	2500	10000	5000	1667	5000	
Electronic REED Sensor							
Supply voltage	VDC	630					
Ambient temperature	°C	-10+70	0				
Switching element Reed contact							
Switching voltage max.	DC/AC	48 V					
Switching current max.	mA	50 (Ri 47	7Ω)				
Breaking capacity max.	W	2					
Quiescent current zero							
Pulse value see type plate							
Pulse width	ms	2500					
Pulse frequency	Hz	0200					
RV Reed	l/pulse	0.1	1	1	1	10	
RV Reed	l/pulse	1			10	100	
Electronic IN Sensor			'		,		
Supply voltage	VDC	525					
Ambient temperature	°C	-10+70	0				
Switching element slot initiator							
acc. to IEC 60947-5-6 (NAMUR)							
Switching voltage max.	DC	5 – 15 V					
Residual ripple		< 5 %					
Switching current	mA	> 3 (at	8 V, 1 kΩ)				
Quiescent current zero	mA	< 1 (at	8 V, 1 kΩ)				
Pulse value see type plate							
Pulse width	ms	2500					
Pulse frequency	Hz	0200					
Pulse values for remote transmitter							
IN inductive (IEC 60947-5-6)	l/pulse	0.01	0.01	0.1	0.1	1	
INA inductive (IEC 60947-5-6)	l/pulse	1			10	100	


Mechanical counter CONTOIL® VZO/A

Local mechanical display with or without pulse output.

Pulser RV


- Pulse value is marked on type plate
- Cable: 3 m
- Polarity: in any order

Pulser IN

Pay attention to polarity when connecting the plug.

- Pulse value is marked on type plate
- Connection cable min. 2 x 0.35 mm² and 5.5 13 mm external cable diameter on plug
- Prefabricated cable available

Technical data CONTOIL® DFM Blind unit

DFM blind unit		Meter DN size
Nominal diameter	DN mm	20 25
	inch	3/4 1
Electronic		
Supply voltage	VDC	632
Pulse width	ms	20
Operating temperature	°C	-20+ 80
Storage temperature	°C	-40+125
Switching element		Open Drain
Supply voltage	VDC	12/24 board systems
Switching voltage max.	DC/AC	48 V
Switching current max.	mA	50
Pulse value see type plate		

Options for CONTOIL®

Pairing

If the application consists of a differential measurement (supply and return), the CONTOIL® VZFA II or VZOA can be paired with higher accuracy.

The flow is measured in the supply and return line pipes. The difference between the two measurements is regarded as the consumption.

To obtain optimal measurement results, CONTOIL® VZFA II or VZOA fuel oil meters are calibrated in pairs, they are adapted precisely to the plant/system operating conditions. The flow rate occurring in each meter, the permissible pressure drop and the viscosity of the fluid must all be considered during the design phase.

The pairing range of the flow meters is obtained as follows:

Flow in supply section less maximum consumption = flow in return section.

When the order is placed, the following additional information is required:

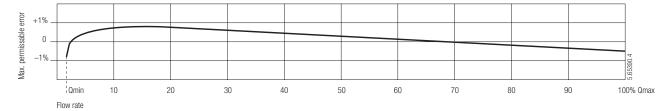
- flow rate in supply section e.g. fixed pumping rate 200 l/h
- flow rate in return section e.g. 120...190 l/h (consumption of 10...80 l/h)

The meters are marked "supply" and "return" during calibration and final testing in the factory. They must then be installed in the designated location. For further information on the subject of differential measurement, see the section "Project planning notes".

Linearization

The CONTOIL® VZFA II can be linearized to achief an even better accuracy of +/-0.3 % across the full measureing range (Qmin...Qmax). During this calibration process the flow meter is being tested across the full range with a maximum of 15 measureing points and than linearized and tested.

Reference conditions


Measuring error limits according to technical data of meter in % of actual value for the whole measuring range. Calibration medium: Calibration oil is similar to extra light heating oil, density at 20 °C = 814 kg/m³

Viscosity = 5.0 mm²/s according to DIN 51757 / ISO 3104 (corresponds to 4.1 mPa.s)

Temperature: 18...25 °C

Horizontal mounting, readings from counter.

CONTOIL® oil meters are never to be tested with water, otherwise they will get damaged.

Technical data CONTOIL® DN 15...50 - VZFA II CE and VZOA CE

Hydraulic			Meter Di	N size			
Nominal diameter		DN mm	15	20	25	40	50
		Inch	1/2	3/4	1	1 1/2	2
Installation length		mm	165	165	190	300	350
Nominal pressure threaded		PN bar	16				
ends							
Nominal pressure flanges		PN bar	25				
Max. medium temperature	Tmax	°C	130				
Max. environment temperature	Т	°C	-25+70				
Max. storage temperature	Tmax	°C	-25+85				
Max. storage humidity	rhmax	%rh	95, non c	ondensing	9		
Maximum flow rate	Qmax	l/h	400	1000	2000	6000	20000
Minimum flow rate	Qmin	l/h	40	100	200	600	2000
Minimum measured volume	Vmin	1	2	20	20	20	200
Max. permissible error 1)	(VZFA II C	E /	< ±0.3 %	of actual	value		
	VZOA CE)						
Accuracy class			0.5				
Measuring chamber volume		cm3	12	36	100	330	1200
Safety filter mesh size		mm	0.400	0.400	0.400	0.800	0.800
Weight with threaded ends ²⁾		kg	2.2	2.5	4.2	17.3	-
Weight with flanges PN 25		kg	3.8	4.5	7.5	20.3	41.0
Hydraulic Material			Meter Di	N size			
Part	Material	DN mm	15	20	25	40	50
Housing with threaded ends	Cast Brass						
		I graphite					
	iron GJS 4						
Housing with flanged ends		I graphite					
	iron GJS 4						
Measuring chamber PN 16 / 25	Cast Brass						
	Alu-Bronz	e					•
Measuring chamber PN 40	Stainless s	teel					
Seals	FEP fluore	lastomer					
Rotary piston	Anodized	aluminium					
Ancillaries	Plastic						
Housing finish	Enameled 3013	red, RAL	•	•	•	•	•

¹⁾ Manufacturer's specification, valid for the reference conditions as specified under Reference conditions.

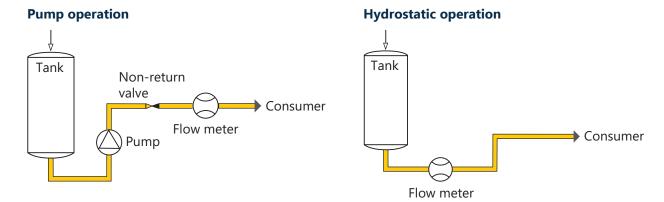
Mechanical and electronic display units are available as described previously.

²⁾ Weight without couplings.

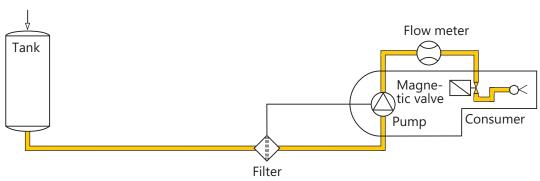
Technical data CONTOIL® DN 15...50 - VZFA CE II and VZOA CE

Versions with type approval or calibration verification

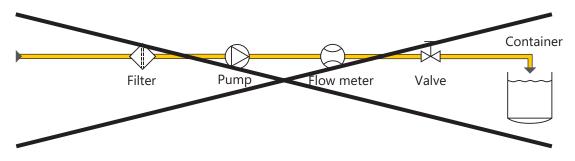
These flow meters bear the test number for the metrological type test certificate in accordance with directive 2014/32/EU and the metrological CE mark and are therefore suitable for custody transfer. For custody transfer, the meters can only be used for direct consumption measurement and has to be installed between fixed pipes. The measurement result can be transferred to external meters by means of pulse transmitters or pulse outputs. The transferred measurement result is not in line with the directive 2014/32/EU and cannot be used as a legally displayed result. Only the local display of the flow meter is valid for custody transfer.


Area of use

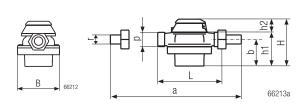
The CONTOIL® flow meter with MID approval is used almost exclusively where the measured liquid (heating oil, diesel) then goes directly to the consumer (heating system burner). Other applications than the described above, must be checked and approved by the local authorities.

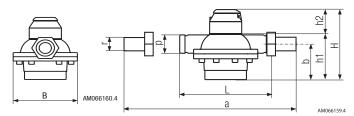

In accordance and compliance with the applicable norms for custody transfer, CONTOIL® flow meters with MID approval can be used.

Responsibility


Installation, operation, maintenance and decommissioning of this device must be carried out by trained, qualified specialists, authorized by the manufacturer, operator or owner of the facility.

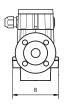
Burner

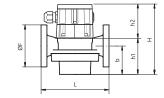

Wrong installation!

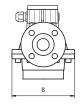

Dimensional drawings

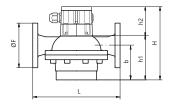
All flow meters with threaded ends are according to ISO 228-1.

DN 15, 20, 25: with threaded ends

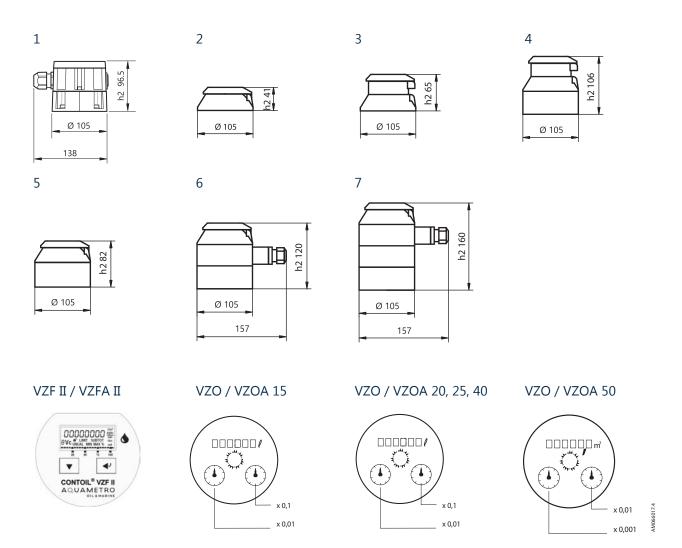



DN 40: with threaded ends


All flow meters with flanges are according to EN 1092-2, ASME B16.5 or JIS B2220.

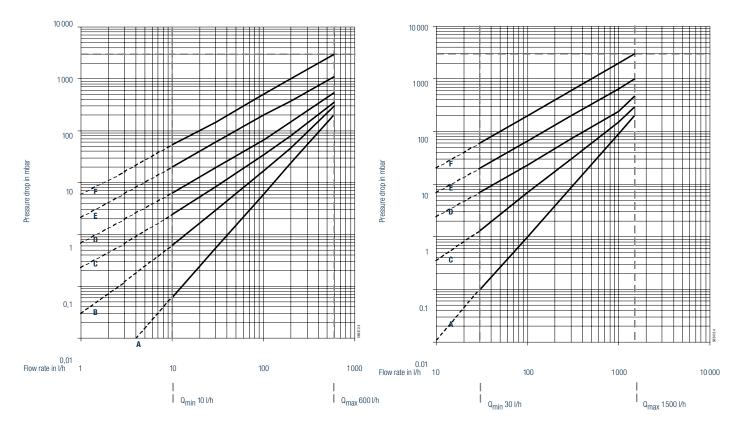

DN 15, 20, 25: with flanged ends

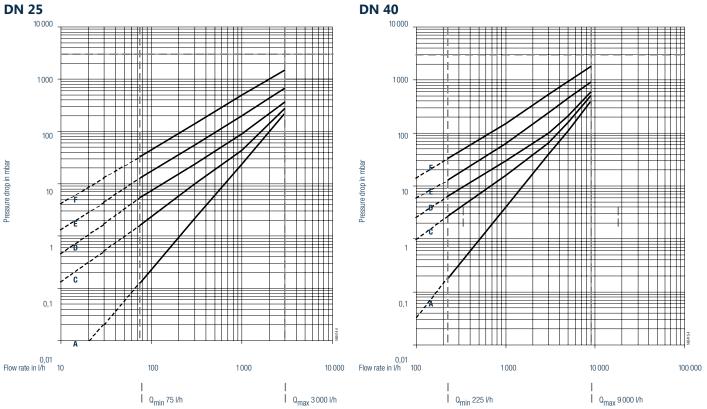
DN 40, 50: with flanged ends


Nomial size	L	В	а	ØF	b	h1	р	r
DN 15	165	105	260	95	45	65	G 3/4'	' G 1/2"
DN 20	165	105	260	105	54	74	G 1"	G 3/4"
DN 25	190	130	305	115	77	101	G 1 1/	′4″ G 1″
DN 40	300	210	440	150	116	153	G 2"	G 1 1/2"
DN 50	350	280	_	165	166	209	_	_

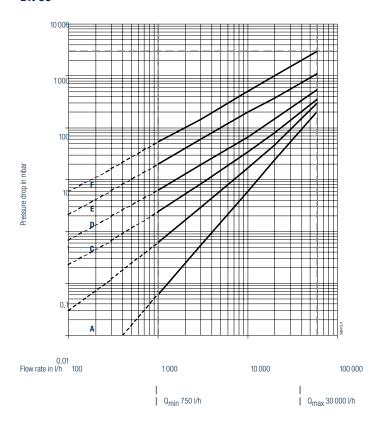
Dimensions in mm h2 is explained on next page H = h1 + h2

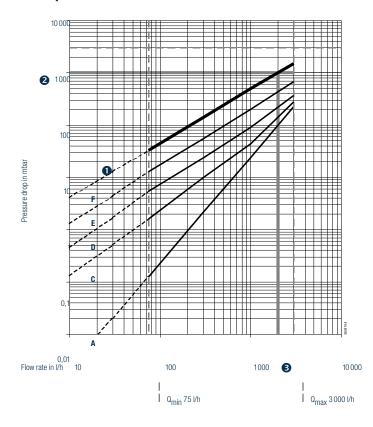
Dimensions of display and pulse units


Sensor	VZF(A) II*	VZO	15	.50*				VZO	40	50 /	VZO	Α*	
Max. temperature	130/180 °C	130	°C		180	°C		130	°C		180	°C	
Pulsers	all	-	RV	IN	-	RV	IN	-	RV	IN	-	RV	IN
Dimensional drawing	1	2	3	6	5	4	7	2	3	6	5	4	7


^{*} VZF(A) II, VZO(A): Dimensional drawings (h2) 1 - 7 from table

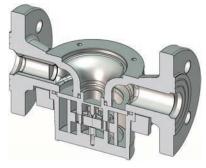
Pressure drop curves

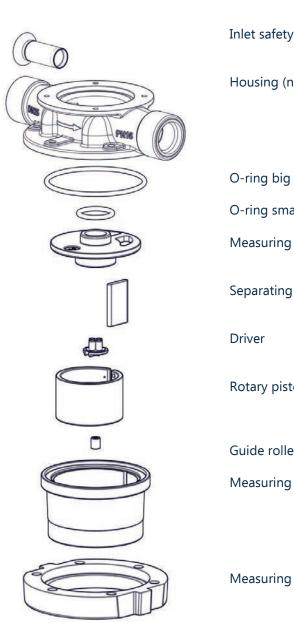



Viscosity diagrams: A = 5 mPa.s C = 50 mPa.s E = 200 mPa.s B = 25 mPa.s D = 100 mPa.s E = 500 mPa.s

For a pressure drop of more than 1 bar, it is recommended to use the next larger meter size. Maximum permissible pressure drop = 3 bar

DN 50


Example



Mineral oil, viscosity 450 mPa.s VZO 25 mounted on pressure side of pumps

- Viscosity curves DN 25 select closest curve
 F = 500 mPa.s
- Assume max. permissible pressure drop1 bar
- The intersection of curve F with the line corresponding to 1bar gives a flow rate of 2000 l/h.

Parts

Inlet safety filter

Housing (no spare part)

O-ring small

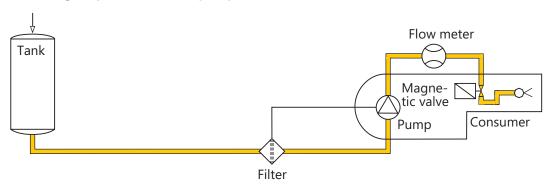
Measuring chamber cover

Separating plate

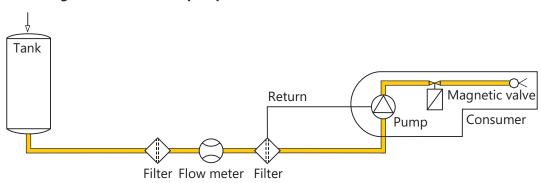
Rotary piston

Guide roller

Measuring chamber


Measuring chamber Flange

Flange screws


Project planning notes

Burner

Mounting on pressure side of pump

Mounting on suction side of pump

Indicative values on power for burners

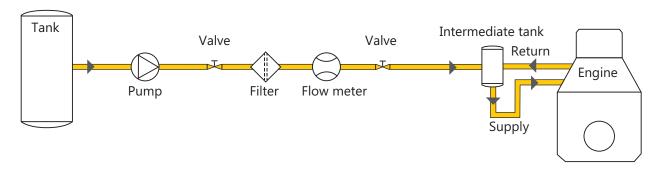
Burner		'	Flow meter	,
Power	Flow rate heat	ting fuel EL	Flow rate	Nominal diameter
		_	QminQcont	
up to kW	kg/h	l/h	l/h	DN
500	42	50	150	4
1300	113	135	4135	8
4000	336	400	10400	15
10000	840	1000	301000	20
20000	1680	2000	752000	25
60000	5040	6000	2256000	40
200000	16800	20000	75020000	50

Formula for consumption in litres/hour:

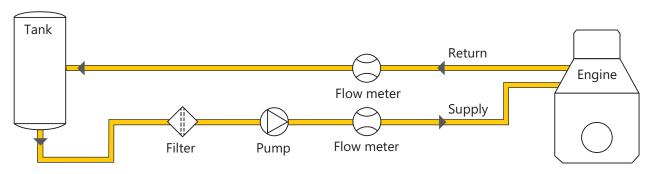
Burner power in kW

Energy value of fuel in kWh/kg x density in kg/dm³

Example:


4000 kW

= 4000 : 9.912 = 403 l/h


 $11.8 \text{ kWh/kg} \times 0.84 \text{ kg/dm}^3$

Engine

Direct measurement

Differential measurement

Engine			Flow meter 1)	
Power	Diesel fuel cons	umption	Flow rate	Nominal diameter
			QminQcont	
up to PS	up to kW	l/h	l/h	DN
250	184	50	150	4
680	500	135	4135	8
2000	1470	400	10400	15
5000	3680	1000	301000	20
10000	7360	2000	752000	25
30000	22000	6000	2256000	40
100000	73600	20000	75020000	50

1) For differential measurement the flow meter has to be selected according to the pump flow rate and the flow in the return pipe.

1 kg Diesel at $0.84 \text{ kg/dm}^3 = 1, 19 \text{ l}$ Formula: 1 DIN-PS = 0.736 kW

1 kW = 1,36 DIN-PS

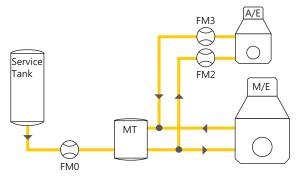
approx. 190 g Diesel / kWh correspond to 0,226 l/h/kW approx. 140 g Diesel / PS correspond to 0,167 l/h/PS Rule of thumb:

Sample calculation with direct and differential measurement

ASSUMPTIONS:

All Flow meter
M/E consumption
A/E
SL: 3'000 l/hr / RL: 2'600 l/hr

Circulation pump 10'000 l/hr


Accuracy M/E with A/E running

→FM2: 1 % of 3'000 l/hr →FM3: 1 % of 2'600 l/hr →26 l/hr

 \rightarrow 30 + 26 l/hr = 56 of 400 l/hr

→FM0: 1 % of 4'000 + 400 l/hr →44 l/hr

→ Total accuracy of M/E = 44 + 56 = 100 of 4'000 l/hr

→A/E consumption 14 % error

→M/E consumption 2,5 % error

Sample calculation with 2x differential measurement

ASSUMPTIONS:

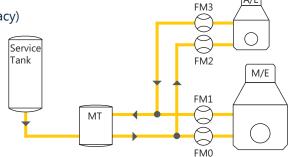
■ All Flow meter calibrated in pair: (0.1% / 0.3% accuracy)

■ M/E: SL: 10′000 l/hr

RL: 6'000 I/hr

■ A/E: SL: 3'000 l/hr RL: 2'600 l/hr

Accuracy M/E with A/E running


→FM2: 0.1% of 3'000 l/hr →3.0 l/hr

→FM3: 0.3% of 2'600 l/hr →7.8 l/hr

 \rightarrow 3.0 + 7.8 l/hr = 10.8 of 400 l/hr

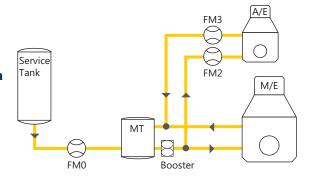
→FM0: 0.1% of 10′000 l/hr à
→FM1: 0.3% of 6′000 l/hr à
→10.0 l/hr
→18.0 l/hr

 \rightarrow Total accuracy of M/E = 10+18 = 28 of 4'000 l/hr

A/E

→A/E consumption 2.7 % error

→ M/E consumption 0.7 % error

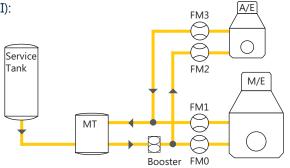

Sample calculation for differential measurement

ASSUMPTIONS:

■ Standard calibration 1 % accuracy (CONTOIL® VZF II):

⇒Supply (FM#0) 10'000 l/h $\pm 1 \% = \pm 100 \text{ l/h}$ ⇒Return (FM#1) 10'000 l/h $\pm 1 \% = \pm 100 \text{ l/h}$

→ Max. difference 2 % = 200 l/h



Pair calibration 0.1 % + 0.3 % accuracy (CONTOIL® VZFA II):

→Supply (FM#0) 10′000 l/h ± 0.1 % = ±10 l/h

→ Return (FM#1) 10'000 l/h \pm 0.3 % = ±30 l/h

→ Max. difference 0.4 % = 40 l/h

Negative influencing factors

List of factors which can influence the performance of the flow meter negatively

Medium	Mechanical	Specification
Seawater	Pulsating pressure	Dimension to small
Acid	Cat fines	Over temperature
Cleaning products	Pre-Filter mesh size	

After any modification of the pipe system the system has to be cleaned / flushed **without** the flow meter installed to prevent any damage to the flow meter from any debris.

Temperature compensation

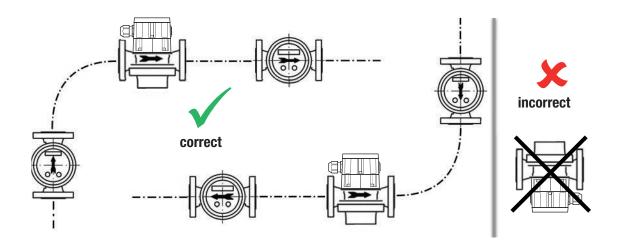
The installation of temperature sensors at the flow meter positions is absolutely essential, without temperature compensation of the flow meter data, the error in the measurement can become extremely large, depending on the process conditions. As a rule of thumb we assume almost 1 % volume difference for each 10 °C temperature difference. (Usually there is a temperature difference between the oil in the supply line and in the return line.)

Density compensation

If fuel oil consumption in mass need to be compared instead of volume, it is important to know that the mass is changing with the density, which itself is changing with the temperature. To obtain most precise measurement results, it is recommended to measure the online density on board. If there is no sensor available, you have to use the density which is given in each bunkering report and calculate volume values at different temperatures back to the corresponding mass values. However there are differences in HFO quality across the world and you should consider that the density mentioned on the bunkering report refers to the required specification.

The CONTOIL® VZF II is able to calculate the mass flow with a given density, adjusted by the measured medium temperature built in the flow meter.

These calculations are done according to DIN 51757.


Installation

Flow meter installation

Identify the flowmeter and ensure that the flowmeter is suitable for the intended process and conditions. Easy access for reading the flow meter and controlling the ancillary equipment is important. Provided that the arrow on the housing is in the direction of flow, the flow meter can be installed in any position without any special modifications. The electronic display unit is rotateable in 90° steps to the installed position.

Exception: upside down installation.

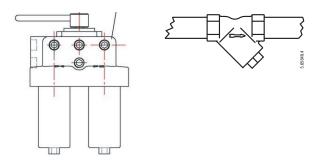
Flow conditioners are not required.

Correct layout of flow meter and accessories

If the flow meter is used for viscosities higher than 5 mPa.s, or if it is mounted on the suction side of a pump, the pressure loss and the flow rate that can still be attained should be determined with the help of the pressure loss curves provided in this document. In addition, the pressure loss due to installed filters must be taken into consideration.

Select the flow meter and ancillaries according to the working conditions listed below:

- Flow rate (maximum expected application flow rate = maximum continuous flow rate of flow meter Qcont)
- Material compatibility with medium
- Operating pressure and temperature
- Ambient temperature
- The flow meters must be selected according to the max. flow rate and not according to the pipe diameter. If necessary, adapt the pipework.


Pulsations at the flow meter shall be avoided to ensure a trouble free operation of the instrument.

Dirt filter, safety filter

Filters are any way required in the system to protect engines and pumps to keep their performance and live time. For flow meters this is no different - that's why we recommend installing the flow meters (in flow direction) always directly after the filter. Some particles in the fuel are also from engine's wear and tear, that's why we also recommend a filter in the fuel return line. Usually basket type filters are best choice for the return line and automatic filters in the supply line. Major engine producers recommend a mesh size of 5 - 10 μ m (automatic filters), especially to filter out very abrasive cut fines. It is best for the flow meter to install it between this automatic filter and the engine. The maximum filter mesh size for a respective meter can be found in below table.

Examples of filter:

Maximum mesh width for filters						
Nominal diameter	Flow meter type					
	VZO/VZF II	VZOA/VZFA II				
DN 15	0.250 mm	0.100 mm				
DN 20	0.400 mm	0.100 mm				
DN 25	0.400 mm	0.250 mm				
DN 40	0.600 mm	0.250 mm				
DN 50	0.600 mm	0.250 mm				

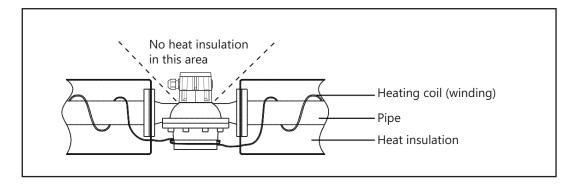
- The filter mounted in the meter inlet is only a safety filter and is too small to act as a dirt filter.
- If a dirt filter with the given mesh size is used, the safety filter in the meter inlet may be removed.

Pulsation dampers

Engines and pumps can cause pressure peaks, which are transmitted throughout the whole fuel piping system and can cause damage to all parts in the system like filters, the viscosity control system, pumps themselves as well as the flow meters. It is recommended to install "pressure pulsation dampers" directly after the device, which is generating such pressure peaks (usually after the pump and after the engine).

Pressure Loss

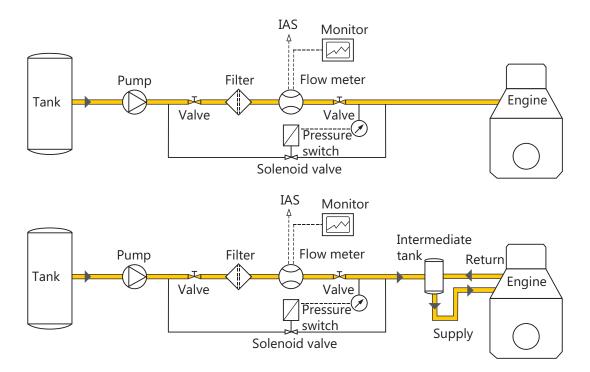
For the dimensioning of oil meters not only the flow rate, but also the pressure loss is important. All components in the fuel piping system and the piping layout itself cause a pressure loss. In general a higher flow and a higher viscosity cause a higher pressure loss over the flow meter. Piping bends, valves, reduction of pipes, as well as strainers and flow meters do also have a pressure loss, which must be taken into account when dimensioning the fuel supply system. Please check the pressure drop at each flow meter with the help of the pressure drop curves. For a pressure drop of more than 1 bar, it is recommended to use the next larger flow meter size.


Ideally the flow meters are installed on the pressure side of the pump.

If the flow meters are on the suction side of the pump there is under pressure, which can cause out-gassing of the oil (1 % gas in the oil causes 1 % measurement failure).

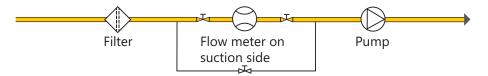
Depending on the viscosity of the oil it is adviced to check the pressure loss and decide if there is still enough pressure after the flow meter.

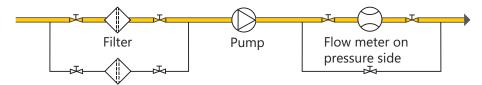
Heat insulation


The electronic counter must not be insulated. This could cause its permitted temperature range to be exceeded.

The permitted temperature ranges for the flow meter must be observed.

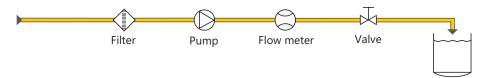
Special requirements - ships


On ships, attention is required to ensure that the engine can continue to operate at full power even if there is heavy filter contamination or if the flow meter requires maintenance. A pressure switch or a manual valve can be used to switch over to the bypass and to draw attention for servicing. The engine then continues to operate without consumption measurements.

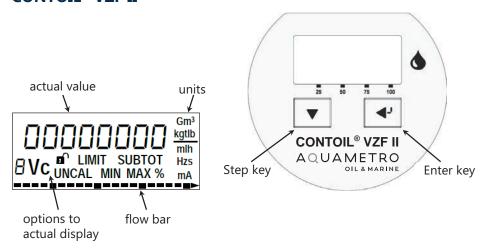

Ship classification societies require the installation of bypass pipes. The relevant regulations must be followed.

Installation of the flow meter on the suction side of a pump

If the flow meter is installed on the suction side of a pump, consideration must be given to avoid air-intake or foam.



Installation of the flow meter on the pressure side of a pump


Special requirements - filling and dosing units

For filling and dosing, the valve must be fitted between flow meter and discharge. The shorter the pipe section between valve and discharge, the higher the accuracy. Avoid water hammer if fast closing valve is installed.

Display and user interface

CONTOIL® VZF II

Warranty, safety instructions

Warranty Disclaimer

Aquametro Oil & Marine guarantees the quality of the product in the context of its General Terms of Business. The owner, operator or installer will be liable for the correct installation as well as the appropriate handling of the equipment upon its receipt.

- Please observe the application-, mounting- and operation-instructions.
- Use the unit exclusively for its designed purpose.
- Maintain the unit and service it according to prescriptions.
- Use accessories only if their applicability is technically safe.

Safety rules and precautionary measures

The manufacturer accepts no responsibility if the following safety rules and precautions are disregarded.

- Modifications of the device implemented without preceding written consent from the manufacturer, will result in the immediate termination of product liability and warranty period.
- Installation, operation, maintenance and decommissioning of this device must be carried out by trained, qualified specialists, authorized by the manufacturer, operator or owner of the facility. The specialist must have read and understood these mounting- and operating-instructions and must follow the instructions here in
- Check the voltage and the information on the type plate before installing the device.
- Check all connections, settings and technical specifications of peripherals which may be present.
- Open the housing or parts of housings, which electric or electronic components included, only when the electric power is turned off.
- Do not touch any electronic components (ESD sensitivity).
- Expose the system with respect to the mechanical load (pressure, temperature, IP protection, etc.), only to a maximum of the specified classifications.
- During operations that involve mechanical components of the system, release the pressure in the pipe system or reduce the temperature of the medium to a safe level for humans.
- None of the information stated here or elsewhere releases planners, installers and operators from their own careful and comprehensive assessment of the respective system configuration in terms of functional capability and operational safety.
- The local labor, safety laws and regulations must be adhered to.

Certificates

Det Norske Veritas - German Lloyd Norway - Germany

		MARITIME
Lloyds Register	United Kingdom	TYPE APPROVAL SCHEME
RRR	Russian River Register	PE 9700
RMRS	Russian Maritime Register of Shipping	
PRS	Polish Register of Shipping	DRS

Notes	

Distributor in Hong Kong:

Charles Marine Ltd

Phone: 2463 6261 Email: info@cmar.hk URL: www.cmar.hk

SWITZERLAND:	Aquametro Oil & Marine AG, CH-4106 Therwil	info@aquametro-oil-marine.com	www.aquametro-oil-marine.com
CHINA:	Aquametro Oil & Marine (CHINA) PTE. LTD., Singapore	info@aquametro-oil-marine.cn	www.aquametro-oil-marine.cn
GERMANY:	Aquametro Oil & Marine GmbH, D-18119 Rostock	info@aquametro-oil-marine.de	www.aquametro-oil-marine.de
INDIA:	Aquametro Oil & Marine Rep. Office, Mumbai 400053	info@aquametro-oil-marine.in	www.aquametro-oil-marine.in
JAPAN:	Aquametro Oil & Marine Rep. Office, Tokyo 152-0031	info@aquametro-oil-marine.jp	www.aquametro-oil-marine.jp
KOREA:	Aquametro Oil & Marine Korea LTD., Busan	info@aquametro-oil-marine.kr	www.aquametro-oil-marine.kr
SINGAPORE:	Aquametro Oil & Marine (S.E.A.) PTE. LTD., Singapore	info@aquametro-oil-marine.sg	www.aquametro-oil-marine.sg
UAE:	Aquametro ME JLT, Dubai / UAE	info@aquametro-oil-marine.ae	www.aquametro-oil-marine.ae